Analysis of neural coding through quantization with an information-based distortion measure.

نویسندگان

  • Alexander G Dimitrov
  • John P Miller
  • Tomás Gedeon
  • Zane Aldworth
  • Albert E Parker
چکیده

We discuss an analytical approach through which the neural symbols and corresponding stimulus space of a neuron or neural ensemble can be discovered simultaneously and quantitatively, making few assumptions about the nature of the code or relevant features. The basis for this approach is to conceptualize a neural coding scheme as a collection of stimulus-response classes akin to a dictionary or 'codebook', with each class corresponding to a spike pattern 'codeword' and its corresponding stimulus feature in the codebook. The neural codebook is derived by quantizing the neural responses into a small reproduction set, and optimizing the quantization to minimize an information-based distortion function. We apply this approach to the analysis of coding in sensory interneurons of a simple invertebrate sensory system. For a simple sensory characteristic (tuning curve), we demonstrate a case for which the classical definition of tuning does not describe adequately the performance of the cell studied. Considering a more involved sensory operation (sensory discrimination), we also show that, for some cells in this system, a significant amount of information is encoded in patterns of spikes that would not be discovered through analyses based on linear stimulus-response measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of neural coding using quantization with an information-based distortion measure

We present an analytical approach through which the relevant stimulus space and the corresponding neural symbols of a neuron or neural ensemble can be discovered simultaneously and quantitatively, making few assumptions about the nature of the code or relevant features. The basis for this approach is to conceptualize a neural coding scheme as a collection of stimulus-response classes akin to a ...

متن کامل

Analyzing Sensory Systems with the Information Distortion Function

The nature and information content of neural signals have been discussed extensively in the neuroscience community. They are important ingredients in many theories on neural function, yet there is still no agreement on the details of neural coding. There have been various suggestions about how information is encoded in neural spike trains: by the number of spikes, by temporal correlations, thro...

متن کامل

Robust Distributed Source Coding with Arbitrary Number of Encoders and Practical Code Design Technique

The robustness property can be added to DSC system at the expense of reducing performance, i.e., increasing the sum-rate. The aim of designing robust DSC schemes is to trade off between system robustness and compression efficiency. In this paper, after deriving an inner bound on the rate–distortion region for the quadratic Gaussian MDC based RDSC system with two encoders, the structure of...

متن کامل

Towards the Limit of Network Quantization

Network quantization is one of network compression techniques to reduce the redundancy of deep neural networks. It reduces the number of distinct network parameter values by quantization in order to save the storage for them. In this paper, we design network quantization schemes that minimize the performance loss due to quantization given a compression ratio constraint. We analyze the quantitat...

متن کامل

Neural coding and decoding: communication channels and quantization.

We present a novel analytical approach for studying neural encoding. As a first step we model a neural sensory system as a communication channel. Using the method of typical sequence in this context, we show that a coding scheme is an almost bijective relation between equivalence classes of stimulus/response pairs. The analysis allows a quantitative determination of the type of information enco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Network

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2003